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Abstract—The modern industrial sector is placing a growing
emphasis on sustainability and efficiency. The concept of Industry
5.0 builds upon Industry 4.0, aiming to combine human skills
with advanced technologies to create flexible and responsive
manufacturing systems. This paper discusses Zero Defect Man-
ufacturing (ZDM), which emphasizes the production of flawless
components from the beginning. The paper introduces a pilot
line for ZDM, which includes a collaborative robotic quality
inspection system that integrates artificial vision and AI decision-
making. The system consists of a manipulator robot, an industrial
camera, an AI IoT node utilizing a segmentation algorithm for
quality control based on YOLO V10, a human operator, and
an Autonomous Mobile Robot (AMR) to ensure the safety of
the human operator. All these components are interconnected
using MQTT and ROS2. The results of the pilot line demonstrate
significant improvements in quality control, reduced waste, and
enhanced operational efficiency, all of which are in line with the
principles of Industry 5.0.

Index Terms—Human safety, Robot-machine interaction, Col-
laborative robots, Zero-defect, Quality control, computer vision,
machine learning

I. INTRODUCTION

Contemporary industrial efforts increasingly prioritize prin-
ciples of sustainability and efficiency. Industry 5.0 seeks to
revolutionize the concepts introduced by Industry 4.0 through
a human-centric approach that integrates human skills with
advanced technologies [1]. This approach aims to estab-
lish manufacturing systems that are flexible and responsive.
Furthermore, collaboration between humans and technology
is also promoted, to enhance interaction and productivity
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[2], addressing concerns about human obsolescence. Key
enabling technologies in Industry 5.0 include energy-efficient
and secure data transmission, storage, and analysis, incor-
porating networked sensors, scalable cybersecurity, big data
management, traceability, and edge computing [3]. Addition-
ally, advanced AI technologies such as causality-based AI,
swarm intelligence, brain-machine interfaces, and informed
deep learning are essential for ensuring AI systems can adapt
to new conditions, handle complex data, detect product errors,
and effectively align human skills with tasks [4] [5].

The principles above mentioned bring new concepts for
manufacturing, regarding environmental, sustainable, and lo-
gistic perspectives. One of these concepts is Zero Defect
Manufacturing (ZDM). The objective is to mitigate failures
within manufacturing processes, emphasizing the production
of flawless components from the outset. The strategy is divided
into product-oriented and process-oriented approaches [6],
focusing on defect identification in products and manufac-
turing equipment, respectively. Key ZDM strategies include
detection, repair, prediction, and prevention of defects, en-
suring continuous process improvement and significant cost
reductions. The increased demand for customized products and
rapid production cycles has made traditional quality control
methods insufficient, necessitating sophisticated techniques for
quality management. Consequently, ZDM not only enhances
production efficiency and reduces waste but also reinforces
customer satisfaction and loyalty by consistently delivering
high-quality products.

The primary contribution of this work is to demonstrate the
benefit of ZDM on industrial productivity and sustainability,
achieved by the deployment of an efficient, human-safe, and



collaborative robotic quality inspection. The system is based
on the interaction of two robots and an AI-based decision-
making process supported on computer vision. Additionally,
enhancing safety by minimizing human operator involvement
in these tasks is a key aspect of this advancement.

This work is divided into five sections. After the introduc-
tion, there is a review of related works. Subsequently, section
III describes the robotic quality inspection system, including
the communications. The next section describes the specific
use case in a manufacturing pilot line and the experimental
results for validation. Finally, a summary of the results is
presented in the conclusions section.

II. RELATED WORK

In this section, a literature review aimed at establishing
the contextual framework for this work is presented. Initially,
Table I outlines a set of methods and technologies that delve
into the foundational principles guiding the present research.
Subsequently, Table II refers to works related to the enabling
technologies forming the basis for the proposed implementa-
tion system.

TABLE I
KEY CONCEPTS IN THE STATE-OF-THE-ART

Reference Relevance for the research

Maddikunta et al. (2022) [4]
• Enabling technologies of 5.0 In-

dustry.

Nahavandi (2019) [2]

• Human-Robot-Machine collabo-
ration instances.

• Impact in Manufacturing.

Psarommatis et al.(2020) [6]
• ZDM main concepts.
• Detection algorithms in ZDM.

Psarommatis (2022) et al. [7]

• Quality control concepts and in-
sights.

• Quality control in ZDM.

Demir et al.(2019) et al. [8]

• Considerations and concerns
about the collaboration and
cooperation between humans and
machines in Industry 5.0.

• Multidimensional perspectives
about a possible human-robot
co-working scenario

III. INSPECTION SYSTEM FOR QUALITY CONTROL IN
MANUFACTURING

Quality control is essential for achieving zero-defect man-
ufacturing. By implementing rigorous quality control, it can
be ensured that each product meets standards of precision
and reliability. This not only reduces the likelihood of defects
reaching the customer but also minimizes waste, leading to
significant cost savings and improved efficiency. Additionally,
maintaining a zero-defect standard enhances a company’s
reputation for quality, fostering customer trust and loyalty
sources of defects. By prioritizing quality control, organiza-
tions can achieve a competitive edge in the market, ensure

TABLE II
ENABLING TECHNOLOGIES

Reference Relevance for the research

Villalonga et al. (2020) [9]
• Systems interconnection, quality

control and data analysis.

Leberruyer et al. (2023) [10]
• Machine learning techniques in

quality control.

Tsintotas et al.(2024) [11] • Active vision insights

Xu et al.(2024) [12]
• Machine learning approaches for

ZDM

Bhattacharya, Cloutier (2022)
[13]

• Deep learning algorithms to de-
tect and identify defects.

Noor-A-Rahim et al. (2022)
[14]

• Review IoT protocols.

Vithanage et al. (2021) [15] • MQTT for IoT.

regulatory compliance, and contribute to overall operational
excellence. Effective quality control in manufacturing involves
regular inspections, testing, and monitoring of the production
processes. For that reason, modern quality control integrates
advanced technologies to enhance precision and efficiency.
These technologies enable real-time monitoring and data
analysis, allowing for immediate detection and correction of
quality issues.

A. System elements description

Considering the key ssues above mentioned, an inspection
system for quality control is proposed in this work. The system
is designed considering flexibility and adaptability to integrate
with most of the manufacturing processes. It is composed of
four elements: a manipulator to pick the manufactured piece
from the production process, a camera to capture high-quality
images of the piece, an AI-based IoT node to analyze the
pieces through a visual inspection algorithm, an AI-based IoT
node to analyze the pieces through a classification algorithm,
and an Autonomous Mobile Robot (AMR) to move the piece
to the final destination, taking into account the output from
the classification algorithm, see Figure 1.

The system takes the operator into account as an important
aspect. The distribution of tasks and elements was done to
reduce the workload and increase the safety of the operators.
This helps to decrease operator fatigue caused by repetitive
tasks and improves working conditions. In terms of safety, all
elements can safely work with the human (cobot) for piece
picking and with the AMR for piece storage or remanufactur-
ing.

Analyzing the role of each component in the system, the
manipulator serves as the initial link between the system
and the manufacturing process. Most production processes
utilize various transportation methods, such as conveyor belts
and autonomous robots, to transport finished pieces to the
warehouse or for delivery. This way, the manipulator enhances
precision, consistency, and efficiency in handling the finished



Fig. 1. Quality inspection system description.

pieces from the transportation element. The arms are equipped
with advanced sensors and end-effectors, allowing them to del-
icately and accurately interact with objects in chaotic picking.

Once the manipulator takes the piece the next step is the
visual inspection. The visual inspection is conducted through
an industrial camera. The camera serves as a crucial tool for
ensuring product integrity. It captures high-resolution images
of products or components, providing detailed visual data for
analysis. This data enables the detection of tiny defects such
as cracks, scratches, dents, or color inconsistencies, which are
essential for upholding product quality. The camera also allows
to measure dimensions and geometrical properties with high
precision.

The next step is to process and analyze the data collected
from the camera. This data is analyzed in a computational node
using a machine learning-based classification algorithm. The
algorithm analyzes visual data to detect defects and anomalies
that may be challenging for human inspectors or traditional
methods to identify. By leveraging machine learning, it can be
trained on extensive datasets to recognize patterns, categorize
defects, and predict potential quality issues with high accuracy.
One of the main advantages of using this kind of algorithm
is the continuous improvement over time, by learning from
new data to enhance their detection capabilities. This results in
faster identification and correction of defects, reducing waste
and improving overall product quality [16].

Once the piece is positioned over the AMR, the AMR
uses the output from the classification algorithm to proceed
to its intended destination. Depending on the classification,
the AMR will take the piece to the warehouse if it’s correct,
to waste if it can’t be fixed, or to the manufacturing process if
the detected defect can be rectified through remanufacturing.
The use of AMRs provides flexibility due to their ability to
dynamically navigate and adapt to changes using advanced
sensors. This integration into existing workflows makes them
suitable for deployment in various production process layouts,
enhancing operational efficiency by optimizing routes in real

time for tasks like storage and delivery.
The proposed solution is designed to be flexible and adapt-

able, allowing for integration with various shop floor layouts.
However, it is important to consider some limitations. From
the manipulator’s perspective, the geometry of the piece is
crucial, and selecting the right grip is essential. For the camera,
limitations primarily stem from environmental conditions such
as illumination and visual noise. As for the classification
algorithm, having a sufficient amount of high-quality data to
represent the entire operational range is crucial for accurate
classification. Lastly, for the AMR, while it can navigate effi-
ciently in complex environments, there are limitations related
to space and safety, especially in zones with human operators.

B. Communications

An efficient and reliable communication is crucial for
maintaining operations and ensuring optimal performance in
manufacturing processes. Adhering to industry 5.0 standards,
it is essential to implement an IoT network that can efficiently
obtain real-time data from various components such as sensors
and smart devices. In order to select a protocol for imple-
menting this IoT network some aspects like speed, flexibility,
and scalability should be considered. Taking these aspects into
account, the MQTT (Message Queuing Telemetry Transport)
protocol was chosen to facilitate communication between the
components of the quality control system. MQTT plays a
crucial role in facilitating IoT communications within the
framework of Industry 5.0, which emphasizes the integration
of advanced technologies with human-centric approaches to
manufacturing. MQTT is a lightweight and efficient messaging
protocol designed for low-bandwidth and high-latency net-
works, making it perfect for connecting numerous IoT devices
in industrial settings. Its capability to facilitate reliable and
real-time data exchange among sensors, machines, and control
systems ensures smooth operation and coordination along the
production line.

Following the MQTT principles and to ensure flexibility
scalability and lightweight communications a proper message
structure should be defined. This message must contain all the
information related to the action to be carried out. This way,
the following structure for the message was defined:

• Topic: /Component/Action. The first part of the topic will
identify the component where the action should be carried
out. In the second one the action. This structure allows
to easily track all the actions in the system.

• Payload: the payload is optional, just for messages
whereas is mandatory for the action clarifications such
as the results of the classification and the goal for the
AMR.

IV. CASE STUDY: ZERO-DEFECT MANUFACTURING PILOT
LINE

The pilot line selected for the system validation includes
two machine tools with sensors, two manipulator robots, and
two conveyor belts. The machine tools include a Deckel
Maho DMC 75V Linear high-speed machining center with



a CNC Siemens 840D, and an ultra-precision micromachining
center Kern-Evo with a laser control Nano NT. Additionally,
a collaborative robot Universal Robots UR5e and an industrial
manipulator Stäubli RX90 are positioned next to the machines
for operational handling. Finally, two conveyor belts are re-
sponsible for transporting the workpieces between machines.

The process implemented in the pilot lines is the manufac-
turing of envelopes for structural isolation. This manufacturing
process is composed of several steps. First the operations of
profiling the edges of the covering to eliminate imperfections.
Then measurement of the height of the panel surface to
calculate a compensation based on the different highs of the
surface to conduct the final step cutting of the guide groove.
All these operations take place in the Deckel machine tool.
After this, a superficial engraving is carried out on the surface
in the Kern-Evo machine tool. Finally, an AMR is introduced
with the aim of transporting the piece to the delivery or
remanufacturing points.

Carefully analyzing the process to guarantee the final qual-
ity, a vision-based inspection control must be conducted at
the end of the operations of the first machine tool. For this,
the implementation of the proposed control system is carried
out. The UR5e robotic manipulator presents the four faces
of the object to the camera connected to an IoT node. The
selected camera for artificial vision inspection was the Allied
Vision Mako G-192. As AMR a ROSbot XL HUSARION,
equipped with a LiDAR RPLIDAR A2 and a stereoscopic
camera Intel RealSense, is used to facilitate the transfer
of manufactured pieces. Finally, as an IoT node for image
processing, a Raspberry Pi 4 model B with 8GB RAM was
introduced. All the elements from the pilot line and the quality
control system are shown in Figure 2.

Fig. 2. Manufacturing pilot line.

Based on the evaluation of the image from the piece the
decision-making process conducted on the IoT node has three
outputs ”COMPLAIN PIECE”, ”NON-COMPLAIN PIECE”
and ”REMANUFACTURING”. Depending on the output the
AMR takes the piece to the warehouse after the second
machining process, takes it to the waste point, or to the
first machine tool to fix the manufacturing defects. Figure 3
represents the navigation map of the AMR with the different
goal points highlighted. Point 1 represents the location where
the piece is placed by the collaborative robotic arm on the

AMR tray. Points 2 and 3 are the two sections of storage
piles, one for pieces to be repaired and the other for pieces
ready for delivery, respectively. Point B indicates the charge
point of the AMR.

Fig. 3. Navigation map for AMR planning.

A. Visual inspection-based decision-making

One pivotal point in the production workflow is located
in the visual inspection control. Therefore, decision-making
processes are carried out based on the results of an object
detection algorithm using AI. For this task, the state-of-the-art
object detection algorithm YOLOv10 is used [17]. Specifically,
the algorithm is trained on a custom dataset for detecting
correctable and non-correctable defects on the produced items.
Figure 4 shows an item that contains both types of defects, cor-
rectable and non-correctable. In this case, correctable defects
refer to scratches or minor surface irregularities, while non-
correctable defects refer to cracks or chipping. Information
related to the results obtained for the training of the YOLOv10
algorithm on the custom dataset can be found in Table III.

TABLE III
TRAINING METRICS

Metric Training result
Precision (P) 0.959

Recall (R) 0.970
Mean Average Precision at
an Intersection over Union 0.979
threshold of 0.5 (mAP50)

Additionally, Figure 5 shows the confusion matrix obtained
during cross-validation.

Given the high accuracy demonstrated by the algorithm for
detecting defects in the produced items, it is used as the base
of the decision-making process. Figure 6 depicts how this
process is carried out. First, the algorithm runs an inference
on four images (one for each side of the item). Second, if a



Fig. 4. Item presenting both, correctable and non-correctable defects.

non-correctable defect is detected in any of the four images,
a message indicating that the current item must be removed
from production is published. On the other hand, if no non-
correctable defects are found, the next step is to check if
any correctable defect is detected. If correctable defects are
detected, a message containing a list of the item’s sides that
must be remanufactured (where the defects were found) is
published to indicate that the current item must be sent to a
previous stage of the production process. Finally, if no defects
are found, a message indicating that the item is ready to be
sent to the next stage of the production process is published.
This way, the production workflow can be modified to handle
efficiently the occurrence of defects, by removing the item
from the production line and avoiding wasting time in further
processing if the item has a non-correctable defect, or by
timely remanufacturing the item if it has correctable defects
before carrying out other operations.

Fig. 5. Cross-validation confusion matrix.

B. Results

In order to assess the impact of the quality control system
on the pilot line, several tests were conducted, with ten
replicas made for each case. Table IV summarizes the system’s
performance. In general, the production time is not affected

Fig. 6. Decision-making procedure.

by the introduction of the quality control system, except when
the piece needs to be remanufactured, in which case the time
increases. However, this increase is justified because most of
the pieces detected as remanufactured will be labeled as waste,
thereby increasing the defect rate.

TABLE IV
SYSTEM PERFORMANCE

Type of piece Total Insp. accuracy Prod. time increase (%)
Good (P) 10 1 2.6
Bad (R) 10 1 2.6

Re-manufactured 10 1 7.2

On the other hand, many times an operator finds it difficult
to differentiate between a piece that must be discarded and
one that can be remanufactured. In this sense, the inspection
algorithms, with high accuracy, are capable of improving the
piece classification, reducing waste and leading to a zero-
defect manufacturing process. Of course, to achieve the zero-
defect goal, other aspects related to the process need to be



analyzed and improved, but for sure, one of the main aspects,
quality inspection, is covered.

Another aspect taken into consideration was the operator.
Figure 7 shows the average operator physical activity time
determined in the tests. As can be seen, in all cases the
operator’s physical workload was reduced when the fully auto-
mated quality control system was used. The biggest reduction
occurs in the case of a piece needs to be re-manufactured (i.e.,
reinserted at the beginning of the pilot line to correct some
defect), where the operator’s physical workload was reduced
from 14.46% to 8.69% (these values are expressed concerning
the time that it takes the product to move from the beginning
of the line to its final destination)

Fig. 7. Comparison of the average operator’s physical workload

V. CONCLUSION

The introduction of a Zero Defect Manufacturing (ZDM)
strategy in the GAMHE 5.0 pilot line has led to significant
improvements in quality control and operational efficiency. By
utilizing set of enabling technologies such as AI, machine
vision, and autonomous robots, a substantial reduction in
defects is achieved, minimizing waste, and guaranteeing the
production of high-quality components. The robotic inspection
system in the pilot line, featuring a collaborative robot and an
Autonomous Mobile Robot (AMR), has effectively reduced
human operator involvement, thereby enhancing safety and
productivity. This system’s capability to detect, categorize,
and appropriately handle defective pieces has highlighted
the potential of ZDM approaches in modern manufacturing
environments.

In the future, research and development in Zero Defect
Manufacturing and Industry 5.0 should focus on integrating
advanced AI technologies such as informed deep learning and
brain-machine interfaces to enhance human-machine collabo-
ration. It is also important to expand the capabilities of the
pilot line to include more complex and heterogenous man-
ufacturing processes. Additionally, developing more robust
and scalable IoT networks and cybersecurity measures will
ensure the reliability and security of data transmission and

analysis. By integrating sophisticated algorithms for decision-
making and optimal allocation of resources, the system’s
efficiency and responsiveness can be further enhanced. These
advancements will contribute to the broader adoption of ZDM,
ultimately driving the manufacturing industry towards greater
sustainability, efficiency, and human-centric innovation.
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